
1 Distinguishing between distributions of states

Let X,Y be two classical distributions over {0, 1}n with xi being the probability
that X outputs i. Let {|Ψi〉 | i ∈ {0, 1}n}, be an orthonormal basis. Define two
quantum state probability distributions E1, E2.

E1 = {|Ψi〉@
√
xi}

E2 = {|Ψi〉@
√
yi}

How distinguishable are E1, E2 from one another?
We want to compute TD(ρx, ρy) where

ρx =
∑

i∈{0,1}n
xi|Ψi〉〈Ψi|

ρy =
∑

i∈{0,1}n
yi|Ψi〉〈Ψi|

As these are two orthonormal bases, we know there exists a unitary U
which maps U |Ψi〉 → |i〉. From the properties of trace distance, we know
that TD(σ, ρ) ≥ TD(E(σ), E(ρ)) so we can apply this with E being the unitary
application of U .

TD(ρx, ρy) ≥ TD(UρxU
†, UρyU

†)

We can apply U† again to see that we haven’t lost any distinguishing advantage.

TD(ρx, ρy) ≥ TD(UρxU
†, UρyU

†) ≥ TD(U†(UρxU
†)U,U†(UρyU

†)U) = TD(ρx, ρy)

From the above we see that

TD(UρxU
†, UρyU

†) = TD(ρx, ρy).

Now let’s try to bound TD(UρxU
†, UρyU

†).

UρxU
† = U(

∑
i

xi|Ψi〉〈Ψi|)U† =
∑
i

xiU |Ψi〉〈Ψi|U† =
∑
i

xi|i〉〈i|

UρyU
† = U(

∑
i

yi|Ψi〉〈Ψi|)U† =
∑
i

yiU |Ψi〉〈Ψi|U† =
∑
i

yi|i〉〈i|

Since these two matrices are diagonal, their difference is also diagonal. Thus we
can find the trace distance between them

TD(ρx, ρy) = TD(UρxU
†, UρyU

†) =
1

2

∑
i

|xi − yi| = SD(X,Y )
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2 Trace distance between two arbitrary states

2.1 If the states are orthogonal

Two orthogonal states |Ψ〉, |Φ〉 should be perfectly distinguishable. To show
this is the case, we know there exists some basis B with basis vectors bi which
contains both of these vectors with b0 := |Ψ〉, b1 := |Φ〉. We know there also
exists a unitary U such that U |bi〉 → |i〉.

TD(|Ψ〉〈Ψ|, |Φ〉〈Φ|) ≥ TD(U |Ψ〉〈Ψ|U†, U |Φ〉〈Φ|U†)

From the construction of U we know that U |Ψ〉〈Ψ|U† and U |Φ〉〈Φ|U† are both
diagonal matrices with a singular 1. They are also on different places in the main
diagonal as they would not be mapped to the same element due to orthogonality.

TD(U |Ψ〉〈Ψ|U†, U |Φ〉〈Φ|U†) =
1

2
(|1| − | − 1|) = 1

2.2 If the states are not orthogonal

For simplicity let’s look at the single qubit case. We can express |Φ〉 = α|Ψ〉+
β|b〉 for some normal |b〉 which is orthogonal to |Ψ〉. Again to keep things simpler
we will assume α, β are real numbers.

There exists a U which maps this new basis to the computational basis.

U |Ψ〉 → |0〉
U |b〉 → |1〉

And so U |Φ〉 = α|0〉+ β|1〉 =

(
α
β

)
. We can write out U |Φ〉〈Φ|U† as.

U |Φ〉〈Φ|U† =

(
α2 αβ
αβ β2

)
And use it to bound the trace distance of |Ψ〉, |Φ〉.

TD(|Φ〉〈Φ|, |Ψ〉〈Ψ|) =∗ TD(U |Φ〉〈Φ|U†, U |Ψ〉〈Ψ|U†) =
1

2
|
(
α2 − 1 αβ
αβ β2

)
|

(∗) - This is an equality, not an inequality because we can apply U† to receive
TD(|Φ〉〈Φ|, |Ψ〉〈Ψ|) again, thus the trace distance did not go down.

Let e, f be the eigenvalues of the difference matrix. It is a known fact that
the trace of a matrix is equal to the sum of its eigenvalues. Here the trace is
α2 − 1 + β2 = 0. This holds using the fact that α2 + β2 = 1 from the norm of
|Φ〉. Thus we know that e+ f = 0⇒ e = −f .

It is also a known fact that the determinant of a matrix is the product of its
eigenvalues. Here the determinant is (α2−1)β2−α2β2 = −β2. Thus e·f = −β2.
Since e = −f , −f2 = −β2. We now have two solutions for f .

f1 = β, e1 = −β
f2 = −β, e2 = β
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In any case, we know that the trace distance is half of the sum of the absolute

values of the eigenvalues, and thus TD(|Φ〉〈Φ|, |Ψ〉〈Ψ|) = |β|+|−β|
2 = |β|.

3 QOTP without 0-keys

We have seen how the quantum one-time pad (QOTP) when used with a uni-
formly random key is secure. That is, with key register distribution ρK :=∑
i∈{0,1}n

1
2n |i〉〈i|, we can take any input and hide it so that without the key, all

inputs look the same. So for any density operators ρA, ρB of equal dimension
defined by the key, E(ρK ⊗ ρA) = E(ρK ⊗ ρB) = 1

2n I.
Note: our exact security definition was even stricter, see lecture slides if

interested.
Previously we have had an exercise where a person avoids the all zeros key

for a one-time pad because then the ciphertext is just the plaintext message,
and that feels insecure to them. What would happen if the zero key was avoided
in QOTP? How distinguishable are two different messages when using QOTP
with this key distribution - what is TD(E(ρ′K ⊗ ρA), E(ρ′K ⊗ ρB))?

As the zero-key is no longer used, the key distribution is no longer ρK , but
instead we define a ρ′K :=

∑
i∈{0,1}n\0...0

1
2n−1 |i〉〈i| which is uniform does not

include the all zeros keys. Understanding the shapes of the ρK , ρ
′
K matrices is

useful in a later step. They are both diagonal matrices, but ρ′K has no value
on the |0 . . . 0〉〈0 . . . 0| entry, and has larger values on the rest of the diagonal
entries as all density operators have diagonal elements with a sum of 1.

ρK =


1
2n 0 . . . 0
0 1

2n . . . 0
...

...
. . . 0

0 0 0 1
2n

 ρ′K =


0 0 . . . 0
0 1

2n−1 . . . 0
...

...
. . . 0

0 0 0 1
2n−1



Now we can compute how noticeable avoiding the zero key is by finding
TD(E(ρK ⊗ ρA), E(ρ′K ⊗ ρA)) - that is, the difference between using QOTP on
some input ρA using the normal key distribution ρK , and the zeroless one ρ′K .

TD(E(ρK ⊗ ρA), E(ρ′K ⊗ ρA)) ≤ TD(ρK ⊗ ρA, ρ′K ⊗ ρA) = TD(ρK , ρ
′
K)

The properties used for the above line can be found under the knowlet TD-
Props in the lecture notes. As we have explicit constructions of ρK , ρ

′
K , we can

compute their trace. For the following computation, it helps to visualize ρK ,
ρ′K and |ρK − ρ′K |.

ρK − ρ′K =


1
2n 0 . . . 0
0 1

2n −
1

2n−1 . . . 0
...

...
. . . 0

0 0 0 1
2n −

1
2n−1


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TD(ρK , ρ
′
K) =

1

2
tr|

∑
i∈{0,1}n

1

2n
|i〉〈i|+

∑
i∈{0,1}n\0...0

1

2n − 1
|i〉〈i||

=1 1

2
(| 1

2n
|+

∑
i∈{0,1}n\0...0

| 1

2n
− 1

2n − 1
|)

=2 1

2
(| 1

2n
+ (2n − 1)| 1

2n
− 1

2n − 1
|)

=
1

2
(| 1

2n
+ (2n − 1)

|2n − 1− 2n|
2n(2n − 1)

)

=
1

2
(| 1

2n
+ |−1

2n
|) =

1

2n

In the above, =1 follows from the fact that anything in the form of |i〉〈i| is
on the diagonal, and for a diagonal matrix, the trace of the absolute value of
the matrix is the sum of the absolute values of main diagonal elements. In =2

we use the fact that the sum
∑
i∈{0,1}n\0...0 has 2n − 1 identical summands in

it, thus it is just multiplying.
We have now shown that for any input ρA, using the zeroless key distribution

is 1
2n -far from the secure QOTP using all keys uniformly. This also now allows

us to show what is the distinguishing advantage when QOTP is used on two
arbitrary inputs - the TD(E(ρ′K⊗ρA), E(ρ′K⊗ρB)) we wanted to find originally.

We denote by A ≈ε B that TD(A,B) ≤ ε, meaning A and B are ε-
distinguishable.

E(ρ′K ⊗ ρA) ≈ 1
2n E(ρK ⊗ ρA) = E(ρK ⊗ ρB) ≈ 1

2n E(ρ′K ⊗ ρB)

Her the first ≈ means that using QOPT with the zeroless key distribution
on input ρA is 1

2n -far from using QOTP on it with the right key distribution.
The middle equality holds as with the correct key distribution, QOTP provides
complete indistinguishability for every input. And then the second ≈ is again
comparing the proper key distribution vs the zeroless key distribution, but on
input ρB .

Using the triangle inequality on this chain gives us

TD(E(ρ′K ⊗ ρA), E(ρ′K ⊗ ρB)) ≤ 2

2n
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